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Supersymmetry, the Barducci-Casalbuoni-Lusanna 
Lagrangian, and the Weyl group in d dimensions 

D J Almond 
Department of Physics, Queen Mary College, Mile End Road, London, E l  4NS, UK 

Received 15 October 1980 

Abstract. We consider the Lie algebra of the d-dimensional Weyl group 0 IJ(1) which 
describes off-mass-shell particles in d-dimensional Minkowski space. We show that the 
algebra generated by the position R’”, momentum P’”, spin W””, and mass M, is invariant 
under a transformation, involving an arbitrary function of P 2 ,  which is an evolution of the 
relativistic system. We also show that, for d = 4, the algebra is invariant under a trans- 
formation (rest-frame rotation) generated by W”/(P2)1’2, where W” is the Pauli-Lubanski 
spin pseudovector. We analyse the Lagrangian of 2 spinning point particle in d dimensions 
using the invariant relation TTT~ - i$& = 0 which is a second-class constraint, and implies 
another second-class constraint P * 6-0. We show that the Dirac brackets for position, 
momentum, and spin satisfy the Weyl group algebra, and that the infinitesimal supersym- 
metry transformation transverse to P” of this d-dimensional Lagrangian is of the same form 
as the aforementioned transformation generated by W’/(P2)”2 for d = 4. We quantise the 
system and construct an explicit realisation of the operators which generate the Weyl group 
plus Clifford algebras. 

1. Introduction 

There has recently been much interest in ‘pseudoclassical’ systems, i.e. classical systems 
described by anticommuting (odd Grassmann) variables. In fact, Allcock (1375a, b) 
and Casalbuoni (1976a, b) have given a comprehensive treatment of such systems both 
with and without second-class constraints (Dirac 1958, 1964, Hanson et a1 1976), and 
have shown that, on quantisation, the anticommuting variables become Fermi opera- 
tors (see also Klauder 1960 and Martin 1959). The classical limit of Fermi quantum 
systems, both unconstrained and constrained, was also studied by Droz-Vincent (1966) 
and Franke and KQlnay (1970) respectively, though they did not consider Grassmann 
variables. Barducci et a1 (1977) have emphasised the point of view that Grassmann 
variables are the classical ( h  + 0) limit of quantum operators with a bounded spectrum, 
since any odd Grassmann variable, or product of odd Grassmann variables, has zero 
square. We should like to give a purely classical example of how Grassmann variables 
can describe the physical properties of a system. Consider a classical nonrelativistic 
spherical top (spinning billiard ball) of radius a and mass M, in three space dimensions. 
If the angular momentum tensor relative to the centre of mass is SI] ,  then the top has 
spin S = $&Si,, and its moment of inertia about its axis of rotation is I = 2Ma2/5. In 
order to obtain a point particle of mass M and spin S,  one might naively think that we 
simply take the limit a + 0 keeping M and S constant. However, this limit is unphysical 
since the rotational energy S 2 / 2 1  blows up as l / a 2 .  To prevent this, S must go to zero 
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1762 D J Almond 

at least as rapidly as a (physically, S - a corresponds to a point on the surface of the 
sphere moving with constant speed as a + 0). Mathematically, the way to keep the 
correct algebraic properties of SI, and yet to have S2 = 0 is to write SI, = -if[&, t,] where 
6 are odd Grassmann variables. In the Lagrangian (Casalbuoni 1976a, Berezin and 
Marinov 1977, Casalbuoni 1976c) 

(1.1) 

describing a free spinning nonrelativistic particle, the odd Grassmann variables 
satisfy the Dirac brackets (6, [,}* = -SI,, thereby giving the correct angular momentum 
Dirac brackets for SI,. 

The intrinsic spin of a relativistic particle can also be described by odd Grassmann 
variables, in fact it was in the context of the spinning relativistic string (Neveu and 
Schwarz 1971, Ramond 1971) that they, and the related supersymmetryt, first made 
their appearance. Barducci et a1 (1976) (BCL) have studied the Lagrangian 

(1.2) 

where ~ ” ( 7 )  is a c-number vector, t”(7) is an odd Grassmann pseudovector, and f 5 ( 7 )  is 
an odd Grassmann pseudoscalar in four-dimensional Minkowski space (our metric 
convention is goo = 1, g,, = -a1,, go, = O ) ,  and showed that it described a pseudoclassical 
Dirac particle. A related Lagrangian involving Lagrange multipliers was studied by 
Berezin and Marinov (1977) who reached the same conclusion. The Lagrangian 
equation (1.2) was derived by Brink et a1 (1977) by eliminating the ‘one-dimensional 
supergravity’ fields e(.) and X ( T )  from the Lagrangian (Brink et a1 1976, Collins and 
Tucker 1977) 

L = i+c(t) &(t )  +im.t*(t) 

L = -i’ 2 6 5 ( 7 ) 4 5 ( 7 )  -&&(7) ’ l(7) - mc [(i (7) -i6(7)&(7)/mC)2]1’2 

L = + [ i 2 / e  + em2c2 - i(5 4 + 5 5 4 5 )  - ixit * i / e  - mct5)I (1.3) 
using the Euler-Lagrange equations for e (7 )  and t 5 ( 7 ) .  The invariance (up to a 
7-derivative) of the Lagrangian, equation (1.3), under 7-dependent supersymmetry 
transformations (Brink et a1 1976) carries through to the Lagrangian equation (1.2) 
which changes by a 7-derivative under (Barducci et a1 1976, Brink et a1 1977) 

~ ” ( T ) + ~ ” ( T ) + & S ( ~ ) P ” ( . T ) / ~ C  

where P” = mc(i.” -i6”i5/mc)/[(i  - i&5/m~)2]1’2 and ~ 5 ( 7 )  is an infinitesimal pseudo- 
scalar odd Grassmann variable. Di Vecchia and Ravndal(l979) have recently studied a 
much simpler Lagrangian which is, however, not invariant under general 7- 

reparameterisations. The ideas which we develop in this paper could be equally well 
applied to that Lagrangian. 

In this paper, we shall study the Lagrangian, equation (1.2), in d-dimensional 
Minkowski space, constructing the fully constrained Dirac brackets and quantising the 
system. The layout of the paper is as follows. In § 2, we treat the Weyl group, the group 
of PoincarC transformations plus dilatations in d-dimensional Minkowski space, which 
describes off-mass-shell relativistic particles (Almond 1973, 1974). We construct the 
position operator R”, and the spin operator W’”‘ from the Hilbert space generators of 

t There are many reviews of this topic available (see e.g. Corwin et a1 1975, Ogievetskii and Mezincescu 1975, 
Ferrara 1976, Fayet and Ferrara 1977). 
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the Weyl group in quantum mechanics, and give the commutators which they, the 
momentum P”, and the mass M satisfy. We show that this algebra is invariant under a 
transformation involving an arbitrary function of P2,  this transformation corresponding 
to an evolution of the physical system. We also show that the algebra is invariant under 
rest-frame rotations, which, for d = 4, are generated by W”/(P2)1’2 where W” is the 
Pauli-Lubanski spin pseudovector. We mention that an infinitesimal rest-frame rota- 
tion for d = 4  is of the same form as an infinitesimal supersymmetry transformation 
transverse to P”, which is discussed in 9 3. We suggest that this phenomenon, which 
occurs also in the nonrelativistic case, is connected with the existence of a set of matrices 
which is a representation of both the Clifford algebra C3 and the rotation group Lie 
algebra SO(3). 

In 9 3, we give a classical treatment of the BCL Lagrangian in d dimensions which 
differs from that of BCL in that our ‘invariant relation’ (which is required to give a 
physical solution) is of the formt ~ ~ ( 0 )  -iit5(0) 2: 0, which is a constant of the motion 
and a second-class constraint, and which gives another second-class constraint P .  6 = 0 .  
The Dirac brackets which we finally obtain involving the position, momentum, and spin 
are just those of the Weyl group given in 8 2. In fact, these second-class constraints have 
already been used by Bachas (1978) to obtain the Dirac brackets for the system for 
d = 4. However, since he also applied the mass-shell constraint and the gauge-fixing 
constraint x o  - CT = 0, his results are different from ours. We are primarily concerned 
with the off-mass-shell Dirac brackets and their connection with the Weyl group. We 
also calculate the Dirac brackets involving the generators of supersymmetry trans- 
formations along P”, and transverse to P”. The latter has the same Dirac brackets as 
those of W”/(P2)1’2 for d = 4 calculated in 9 2. 

In 9 4, we quantise the system, giving an explicit realisation of the position, 
momentum, spin, and supersymmetry generators in a p”-basis involving y-matrices. 

2. The Weyl group in d dimensions 

The group of PoincarC transformations and dilatations on Minkowski space-time has 
been treated in detail for d = 4 (Almond 1973) (for a mini-review see Almond (1974)) 
so we shall be very brief. We are actimlly interested in the direct sum of the Weyl 
algebra with U(1): 

[MI*”, MP“] = ih(M””Pg““ -M”“g”P +&f”“g”P - M “ P g ” U )  

[M”””, P“] = -ih(P”g”“ -Pug”“) 

[P”, P”] = 0,  [D, M””] = 0, [D, P”] = -ihP” 

[MI*”, MI = 0, [P”, MI = 0, [D, MI = 0 

where MILY, P, D, and M are the Hermitian operators generating Lorentz trans- 
formations, translations, dilatations, and U( 1) transformations respectively in Hilbert 
space. We now define the position operator 

R” = i[P”/P2,  D ]  + - [P,,, M”””]+/2P2 (2.2) 

+ The symbol -0 means weakly equal to zero in the sense of Dirac (1958, 1964), i.e. its Poisson bracket with 
any other dynamical variable is not necessarily zero. 
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(where [A, B].+=AB +BA)  and the spin operator (Nyborg 1964, Kolsrud 1967) 

W”U 1= (g”” - P”P”/P2)(g”“ - P”P“/P2)Mp,. (2.3) 
(The Hermiticity of this expression for W”” may be checked using the second of 
equations (2.1), which gives P,,PuMpu = 0 and PflP“Pu = -ihP2(d - l) .)  The operators 
R ”  and W”” satisfy 

[M””, R“]  = -ih(R”g”“ -Rug’”“), 

[D, R ” ]  = ihR”, 

[R”, P ” ]  = --ihg”“ 

[M, R’”] = 0, [R”, R ” ]  = -ih W””/P2 

[R+, wPu] = -ih(Ppwu” -P‘Wp’L)/P2 

and the algebra, equations (2.1) and (2 .4 ) ,  which describes an off-mass-shell relativistic 
particle, has as invariants for d = 4, the operators M, $, W”’ We,, and sign ( P 2 )  which give 
the on-mass-shell mass, spin, and sign of the momentum squared of the particle. For 
d > 4 ,  there are other spin-type invariants e.g. for d = 5, ~ ~ ” ” P u ~ P ~ W u p W 0 7 / ( P 2 ) 1 ’ 2  is 
also an invariant. The classical versions of the above equations are obtained by the 
substitutions :[A, B], .  +AB, and [A,  B]/ih + {A,  B},  the Poisson bracket. Note that 
the commutators/brackets of equations (2.1) and (2.4) are fundamental equations 
which are valid for any off-mass-shell relativistic system. They have been found by 
explicit calculation for the spherical top (for d = 4) by Hanson and Regge (1974), the G4 
supersymmetric model (for d = 4 )  by Casaibuoni (1976a), and for the massless rela- 
tivistic string (for general d )  by Almond (1978). The particle is put onto the mass-shell 
classically by applying to the Poisson brackets of equation (2.4) the mass-shell con- 
straint together with a ‘gauge-fixing’ constraint which eliminates one component of R ”  
(usually R ”, R ’, or D j 

1 

P2 - 1M2c = 0 

R o = a  o r R + = p  o r D = y  
(2.5) 

with a, p ,  y constant. 

time-reversal operator F which satisfy (Almond 1973) 
In quantum mechanics, we also have a unitary parity operator P, and an antiunitary 

PM*”F1 = ?7(p)7)(vjMP” 

PP”P-l= v ( p  jP” 

9-M””r1 = --q(p)??(v)M””” 

9-P”T-l = 77 (p)P” 

PD9-l = D 

PR”P.-l = q ( p ) R ”  

TDy--’ = -D 

Y R ” T 1  = -v(p)R” 
(2.6) 

P’W””P-’ = r / (p)7 / (v )  W K V  

PMF1 = M  FMY-l = M 

9-W””T-l = -7 - / (p)q(v)  W”” 

where ~(0) = +1, ~ ( i )  = -1. 
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An interesting fact about equations (2,1), (2.4), and (2.6) is that they are invariant 
under the transformation 

D D(0)  4 D (T)  = u[f]Du-’[f] = D (0)  +f(p2,  T) 

R’ =R’(O)+R’(T)= U[f]R”Li-’[f]= R’(0)+f(P2, .r)P’/P2 (2.7) 

where U [ f ]  = exp[-(i/2R) ~ ~ z , z  f(u, T) du/u] ,  andf(P2, T )  is an arbitrary real function 
of P2 and the evolution parameter T. (In checking this invariance, remember that 
[D, F(P2)] = --2ihP2 dF/dP2 for any function F(P2).) Equation (2.7) describes an 
evolution of the off-mass-shell physical system (that is why we have to redefine the 
time-reversal operator too). The arbitrary functionf(P2, T)  is just that which appears in 
the invariance of the action integral S = 5:: L dT (where L is a Lagrangian describing a 
free relativistic particle of mass m )  under the transformation ~+f(m’c’,  T). 

Rest-frame rotations are generated by the spin tensor W’” of equation (2.3). 
However, for d = 4, something special happens. In that case we can definet the 
Pauli-Eubanski spin pseudovector W’ = +E ’”p“M,,,,Pu = $e cIyp“ W,,,,Po, and even more 
interesting is the operator W”/(P2)’/2, which has the commutators (Almond 1973): 

W” ihP”W’ 
[R”, p] = pp2- 

(2.8b) 

with similar classical expressions in terms of Poisson brackets. The remarkable fact is 
that equations ( 2 . 8 ~ )  are identical to the Dirac brackets of F’ with the various physical 
quantities in § 3 (see equation (3.28)) and equations (2.8) are identical to the com- 
mutators of J%F‘ with the various physical quantities in §4 ,  where -is’ is the 
generator of supersymmetry transformations transverse to P’, and is classically an odd 
Grassmann variable. In fact equations (2.1), (2.4), and (2.6) are invariant (for d = 4) 
under the transformation (infinitesimal rest-frame rotation): 

R’ + R’ +he  PW”/(P2)1’2 

( 2 . 9 ~ )  
W” 

- - h( e - 9”) p 

t Our convention is E~~~~ =+I. 
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(2.9b) 

where E ”  is the infinitesimal parameter of the transformation. (The invariance of 
equations (2.6) involving M”” may be checked component by component, e.g. we find 

(2.10) 

etc). Equations ( 2 . 9 ~ )  have exactly the same form as the infinitesimal supersymmetry 
transformation generated by -E” for general d, which leaves invariant the Dirac 
brackets in § 3. 

In attempting to understand this phenomenon, it is worth pointing out that the same 
thing occurs in nonrelativistic physics. The spin tensor Sij (the analogue of W””) can be 
defined for general space dimension, and it has the commutators/Poisson brackets (the 
analogues of equations (2.1) and (2.4)): 

(2.11) 

where Jii = -(Ripj - RjPi + S,)  is the angular momentum tensor. (There are, of course, 
other commutators involving T, Ri, Pi, and M, but since these quantities are unaffected 
by rest-frame rotations, they will not concern us here.) In three dimensions, we can also 
define the spin pseudovector Si = &ijkSjk, which has the commutators: 

(2.12u) 

[Si, Si] = ihSii (2.126) 

with similar expressions in terms of Poisson brackets. The generalisation of the 
Lagrangian equation (1.1) to an arbitrary number of space dimensions is straightfor- 
ward and we find the Dirac brackets 

(2.13) 

( 2 . 1 4 ~ )  

[ t i ,  l i l t  = h a i p  (2.14b) 

We see that, classically, equations ( 2 . 1 2 ~ )  are of the same form as the first two of 
equations (2.13), and, quantum-mechanically, equations (2.12) are of the same form as 
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equations ( 2 . 1 4 ~ )  and the definition of Sj j  in terms of (iti)”2[j (i.e. ASij = 
-i[(ih)1/2& ( $ A ) 1 / 2 5 j ] ) .  Furthermore, in three space dimensions, equations (2.11) are 
invariant under the rest-frame rotation 

sjj + sjj - A(&& - E j S j )  

Jjj”Jjj+A(&jSj-&jSj) 

whilst the same Dirac brackets, as well as equations (2.13), are invariant under 

6 + 6 + ai 

Sj j  + Sjj - i(ai.$ + &ai) 

Jj j  + Jj j  + i(a& + (,ai) 

(2.15) 

(2.16) 

where ai is an infinitesimal odd Grassmann parameter. (Note, incidentally, that the 
infinitesimal rest-frame rotation generated by E ~ ~ S ~ ~  an infinitesimal antisymmetric 
c-number parameter) can be considered as a supersymmetry transformation with a 
&dependent parameter since ejjSij = (-ieii&)&.) This connection between rest-frame 
rotations in three dimensions and supersymmetry transformations is surely connected 
with the fact that there exists a set of matrices which satisfy both the angular momentum 
commutation relations of SO(3) 

[si, sj] = ih&jjkSk (2.17) 

and the Clifford algebra C3 of equation (2.14b). They are, of course, the Pauli spin 
matrices ai ( i  = 1 ,2 ,3 )  satisfying 

(2.18) 

so that (Csalbuoni 1976a, Berezin and Marinov 1977, Casalbuoni 1976c) Si = i A a i  
and ti = J$urj. 

Similarly, in the relativistic case, there exists a set of matrices satisfying the 
commutation relations of transverse-to-P:” SO(3) 

r.g,  1 1  = 8.. 11 + ie.. 1 1 k k  (+ 

(2.19) 

and the transverse-to-P’* Clifford algebra C3 

[E:”, E:”]+ = -h(g:”” - P’”P”/P2). 

r” = y p y 5 ( g ;  - p p p S / p 2 )  (2.21) 

(2.20) 

They are given by I?’* (p, = 0, 1 , 2 , 3 )  (Fradkin and Good 1961, Kolsrud 1967)t 

(2.22) 

so that W”/(P2)1’2=$Rr’ and 3’ = 
given in 0 4 does not satisfy equation (2.19) too for d = 4.) 

r I* . (Note that the representation of E’” 

t Our  y-matrix convention is that of Bjorken and Drell (1964). 
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3. BCL Lagrangian in d dimensions: classical theory 

The Lagrangian is that of equation (1.2) repeated here for convenience: 

L = -i&s&s -ifs & - mc[(i  -ilis/mcj2]1’2 (3.1) 

where X , ( T )  is a c-number vector, & , ( T )  is an odd Grassmann pseudovector, and & ( T )  

(the correct notation is & + I ( T )  but no confusion should arise) is an odd Grassmann 
pseudoscalar in d-dimensional Minkowski space. The canonical momenta are 

( 3 . 2 ~ )  

(3.26) 

( 3 . 2 ~ )  

and the Euler-Lagrange equations are 

P y 7 )  = 0 (i.e. P”(7) = P”) (3.3u) 

& ” ( T )  = P”&s(T)/mc (i.e. &‘(P) = L-’(P)~~@(T) = o)? (3.36) 

iS(7) = ~ * i ( . r ) / m c .  (3.3c) 

{X,, P”} = -gF”, {re,  5”) = -g@”, (7% t 5 1  = -1 (3.4) 

The canonical Poisson brackets are: 

and the canonical momenta and coordinates are not independent, satisfying the 
constraintst 

(3.5u) 

(3.56) 

(3.5c) 

x = p  2 - m 2 c 2 = 0  

x+ E =” -;it” I- -0 

xu = rs - $it5 + P.  r / m c  -I- ip. 6/2mc = o 

where x and xD are first-class satisfying 

{x, X I  = 0,  {x, X D }  = 0 ,  {x, X”}” 0 
2 2  {XD, X D }  = -ix/m c , {XD, x”} = 0 

whilst x” is second-class satisfying 
{x”, xu} = ig,” = CWy. 

(3.6) 

(3.7) 

The generators of Lorentz transformations, dilatations, and pseudoscalar and pseudo- 
vector supersymmetry transformations are 

hfwu ( 7 )  = P’”X ” ( T )  - P ” X  ’” ( 7 )  + 7 7 ,  (7)t” (7) - 77 ( T ) f @  (7) ( 3 . 8 ~ )  

D ( T )  = P * x ( . r ) + ? ~ ( 7 ) * 6 ( 7 ) +  X S ( T ) ~ S ( T )  (3.86) 

t L-’(P); is the matrix which takes P into ((P’)’’’, 0 ) ,  see equation (4.2). 
$ Our definition of ,yo differs from that of BCL by a factor i/mc. 
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( 3 . 8 ~ )  

(3.8d) 

the supersymmetry generators satisfying 

{Gs, G53 = -i, {G&, G”} = -ig””, {G”, G5) = iP”/mc. (3.9) 

We now define Dirac brackets { , }* compatible with the second-class constraint 
equation ( 3 5 )  by 

(3.10) {A,  Bl” = {A,  Bl- {A,  x~ l (~ - ’ )””cuy ,  B )  

which tells us that we can put r” strongly equal to i$(” everywhere if we use 

{.$”, .$”}* = iggy (3.11) 

so we write * 

~ ” ’ ( 7 )  =P”x’(7)-PPYx”(7)+it[ .$~(7) ,  .$’(T)] 

(3.12) 

G”(7) = -i(”(T)+iP”t5(7)/mc 

and the Dirac brackets { , }* of the Gs are unchanged from the Poisson brackets 
equations (3.9). 

So far our treatment is that of BCL. Since the canonical Hamiltonian vanishes, they 
show that the general Hamiltonian is a linear combination of the two first-class 
constraints x and X D  

-1- i P  .$/mc) (3.13) 

where p l ,  A I ,  A2 ,  and A 3  are c-number constants. Equation (3.13) can be rewritten as 

H = p l ( P 2  - m7c2)+ ( A 1 r 5  +A2t5)iP..$/mmc 

H = pl (P2 - m2c2) + (A 1r5 + A 2 t S  + A3P * .$)(rs - 

+ A 3P * .$( r5 - i&5) - (iih + A 2 ) ~ 5 . $ 5 .  (3.14) 

Clearly, one choice of constants that will simplify the equations of motion is A 2  = -i$Al, 
when we find 

(3.15) 

and BCL actually made this choice for their quantum Hamiltonian. They also noted that 
in order to obtain a physical solution to the Hamiltonian equations of motion, an 
‘invariant relation’ of the form r5(0)-p.$5(O)=0 is needed. The point about the 
Hamiltonian, equation (3.19, is that 

(3.16) 

so that d(715(7) - p.$5(7))/d7 = 0 for p = -ti, and is =O for p = $i because then xD = 
iP*.$/mc, so for these two values of p, ~ ~ ( 7 )  -p.$5(7) is at least weakly conserved in 7, 

and therefore satisfies the condition for an invariant relation (Hanson et a1 1976). BCL 

analysed the case p = ---ti in Rhich the second-class constraint 7 5  + i$t5 = 0 converts xD 
into the Dirac equation constraint i$(P .$/mc - 5s) = 0 which is first-class and implies 
the mass-shell constraint x = 0 via its Dirac bracket with itself. 

H = p l ( p 2  - m2c2)  + p 2 ( r s  -it.$5)P*.$ 

( ~ / ~ T ) ( T s ( ~ ) - P . $ ~ T ) )  = { T s ( ~ ) - c L . $ ~ ( T ) ,  If}* = p 2 ( ~  +&’*.$ 
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We shall now look at the case p = ii. We now need the Dirac brackets compatible 

(3.17) 

with the constraint 
.1 X i  = 7 7 5  - 15& = 0 

which is second-class satisfying 

{xi, xi}* = i. 

{xi, X I *  = 0 ,  

Furthermore, we have 

{XL, XDI” = i 

(3.18) 

(3.19) 

so that although ,y = 0 is still first-class, xD = 0 is now second-class. We need new Dirac 
brackets { , }** defined by 

{A,  B}** ={A, B}” -{A, ,yi}*(i)-*{&, B}” (3.20) 

which tells us that we can put 7~~ strongly equal to i$t5 everywhere if we use 

(3.21) 

(3.22) 

We now need to apply P*  5 = 0 as a second-class constraint. It satisfies 

{P 6, P * [)** ;= iP2. (3.23) 

However, instead of defining new Dirac brackets, we find it more illuminating, as did 
Bachas (1978), to redefine the physical quantities by 

A + A  -{A, P*[}**(iP2)-’P,t (3.24) 

and continue using the Dirac brackets { , }**. We find 

(3.25) 

(3.26) 

where we see that -is” generates supersymmetry transformations transverse to P”, 
and iP@t5/mc generates supersymmetry transformations along P’. We note that 
R @ ( T ) ,  P@, W””, and M (=m)  satisfy the algebra of the Weyl group 0 U(1), equations 
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(2.4),  in terms of Dirac brackets: 

{ R + ( T ) ,  P’}** = -g””, 

W”” 
{R”(.r),R”(.r)}** = -- 

P2 ’ 

{P”, P”}** = 0 ,  {P”, W”“}** = 0 

(P” W“” - P“WP”) 
P2 

{R”(T), WPO}** = - 

(3.27) 

{P”,M}**={R”(T),M}**={W”Y,M}** = o .  
(The Dirac brackets of the generators M”“ and D can easily be constructed from 
equations (3.26) and (3.27).) We also note their Dirac brackets with E” 

pY3” 
{ R ” ( T ) ,  E’}** =- 

P2 ’ 
{P”, Z”}** = 0 ,  {M, ZV}** = 0 

(3.28) 

which should be compared with equations ( 2 . 8 ~ ) .  The Dirac bracket of E” with itself is 

(3.29) 

Equations (3.27) are invariant under the supersymmetry transformation generated by 
-iE”(= G/* - p @ p .  c / p 2 ) :  

ia PZ” R ”(7)  + R ” ( 7 )  +T 
P 

(3.30) 

[M”” + M”’ + i(a ” 3” + 3”a ”)I 
where a” is an infinitesimal odd Grassmann parameter (cf equations (2.9a)).  As in the 
nonrelativistic case, an infinitesimal rest-frame rotation generated by E,, W”” an 
infinitesimal antisymmetric c-number parameter) can be considered as a supersym- 
metry transformation with a =”-dependent parameter since E+, W@” = i(sguE+)E”. We 
also note the Dirac brackets with iP”tS/mc evaluated in the rest-frame (i.e. 

(3.31) 
all others zero. 

We now apply the mass-shell constraint x 3 P 2  - m2c2 = 0, together with the 
gauge-fixing constraint D(7) - y - (P2)’/’c7 = 0 which says that R’(T) evaluated in 
the rest-frame (i.e. L-’(P);R”(T)) is equal to ( ~ / ~ c ) + c T  (in other words, we choose 
the evolution function of equations (2.7) f(P2, T )  = (P2)1/2c.r). These form a set of 
second-class constraints so we need the new Dirac brackets 

{A,  B}*** = {A,  B}** - {A,  xa}**C,; Cyo, B}** (3.32) 

mc) : 
{R ”(71, i ( ~ ~ ) ’ / ~ t ~ / m c } * *  = - i ~ ~ t ~ / ( ~ ~ ) ’ / ~ m c ,  
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where XI  E X ,  x z  D ( T )  - y - ( P 2 ) ” 2 ~ ~ ,  and 

c a p  = {xa, X p l  = 2PZ( O I). (3.33) -1 0 

The Weyl RPW algebra, equations (3.27), becomes the Poincark RPW algebra (cf 
Rohrlich 1977, Almond 1978): 

( P P  MIu:” - PUWP:”) 
{RI* ( T ) ,  Wpu}*** = - 

M:”” 
{R:”(T), R”(T)}*** = -- 

m2c2’ m2c2 

(3.34) 

{P”, M}*** = {R:”(T), M}*** = {  W:”””, M}*** = 0. 
Since {P2-  m2c2,  S:”}*** = 0 = {D(.r) - y - ( P 2 ) 1 ’ 2 ~ ~ ,  E:”}***, equations (3.28) and 

equations (3.29) are unchanged except for P2+m2c2 on the RHS. Equation (3.31) 
becomes 

= 0. 
mc 

(3.35) 

The simplicity of these results is because M = m rather than a function of E:” and eS, 
when the Dirac brackets { , }*** would have been much more complicated, as in the 
case of the string (Almond 1978). 

4. Quantisation 

We now wish to construct a representation for the operators R :”, P:”, W””, M, Z:”, and t5 
which satisfies equations (3.27) and (3.28) with {A,  B}** + [A,  B] / ih ,  and the quantum 
versions of equations (3.29) and (3.21), which are the Clifford algebra Cd: 

[E:”, &I+ = 0 ,  [ 5 5 ,  !51+ = -h. 

Defining the matrix operator 

) L- l (P);  = ( - P ’ / ( P y  8; -P’Pj/(P2)1’2((P2)1’2 + PO) 
P 0 / ( P 2 y  Pj/(P2)1/2 

(4.1) 

(4.2) 

which takes P” into ((P2)’”, 0) ,  we can write equations (4.1) as 

[t“, “ I +  = ha”, [E“, &I+ = 0, [ 5 s ,  &I+ = -h (4.3) 

where f ‘ (P )  =L-’(P):E”. We can construct a faithful matrix representation y:” of the 
Clifford algebra Cd by standard methods (for a good mini-review of Clifford algebras 
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and their representations see the Appendix of Casalbuoni (1976a)), and a represen- 
tation of equations (4.3) is then given by 

 PI + (ih)”’yi(iy5) 

6 5  ( ihP2y5 
for d = 1 , 2 , 5 , 6 , 9 , 1 0 ,  . . . (4.4b) 

where y 5 = i y  y . . . y satisfies ( y ~ ) ~ =  +I  for d = 3 , 4 , 7 , .  . . and ( Y * ) ~ =  -1 for 
d = 1 , 2 , 5 ,  . . . . The operator E’ is then given by E” = L(P)?[‘(P) so its representation 
is given by 

0 1  d-1 

for d = 3 , 4 , 7 ,  . . . , with the same expressions multiplied by i for d = 1 ,2 ,  5, . . . . The 
spin operator S”(P,  W )  is given by 

s”(P, W )  = -L-~(P);L-’(P)’,W~” = -L-’(P):L-’(P)’y~i[I~, 3’1 

= -&‘(P), 5 ’ (~)1  (4.6) 

S”(Y, W )  + $h&J (4.7) 

so its representation is 

where U‘’ =&‘, y ’ ] .  We must now construct a representation for R ”  and W’”. 
Fortunately, this has already been done for us for d = 4 (Almond 1973, equations (3.29) 
and (3.38)), and the generalisation to arbitrary d is straightforward: 

The verification that equations (4.4), (4.5), and (4.8) (together with P’ + p ” ,  M +  m )  
satisfy the quantum version of equations (3.27) and (3.28) is a matter of straightforward 
(though somewhat tedious) algebra. 

An on-mass-shell particle is described by the above representation ‘with the 
quantum states of the system 10) restricted to those satisfying ( p / 0 ) =  
S ( p 2 -  m2c2)0 (p ) / (S (0 ) )1 /2 ,  and with the gauge-fixing constraint X ~ = D ( T )  - y - 
(P”)‘”cT = 0 applied to such states as a matrix element condition. The discussion is far 
from trivial and is given in detail elsewhere (Alnond 1980). 
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